Distributionally robust optimal power flow with contextual information

نویسندگان

چکیده

• A novel chance-constrained OPF model that accounts for contextual information The dependence between the wind power forecast and its error is exploited robust to ambiguity in conditional distribution Compared others, our method produces reliable solutions are cheaper In this paper, we develop a distributionally formulation of Optimal Power Flow problem (OPF) whereby system operator can leverage information. For purpose, exploit an set based on probability trimmings optimal transport through which dispatch solution protected against incomplete knowledge relationship uncertainties context conveyed by sample their joint distribution. We provide tractable reformulation proposed under popular conditional-value-at-risk approximation. By way numerical experiments run modified IEEE-118 bus network with uncertainty, show how substantially benefit from taking into account well-known statistical point outputs associated prediction error. Furthermore, conducted also reveal distributional robustness conferred probability-trimmings-based approach superior bestowed alternative approaches terms expected cost reliability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization

We propose a data-driven method to solve a stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The objective is to determine power schedules for controllable devices in a power network to balance operation cost and conditional valueat-risk (CVaR) of device and network constraint violations. These decisions include scheduled power output a...

متن کامل

Distributionally Robust Project Crashing with Partial or No Correlation Information

Crashing is a method for optimally shortening the project makespan by reducing the time of one or more activities in a project network by allocating resources to it. Activity durations are however uncertain and techniques in stochastic optimization, robust optimization and distributionally robust optimization have been developed to tackle this problem. In this paper, we study a class of distrib...

متن کامل

Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization

We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...

متن کامل

From Data to Decisions: Distributionally Robust Optimization is Optimal

We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, i.e., a predictor, and an optimizer...

متن کامل

Near-Optimal Ambiguity Sets for Distributionally Robust Optimization

We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Operational Research

سال: 2022

ISSN: ['1872-6860', '0377-2217']

DOI: https://doi.org/10.1016/j.ejor.2022.10.024